Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(4-Carbamoylphenyl)boronic acid

Margarita D. Apostolova, ${ }^{\text {a }}$ Rositsa P. Nikolova ${ }^{\text {b }}$ and Boris L. Shivachev ${ }^{\text {b }}$ *

a Institute of Molecular Biology "Acad. R. Tsanev", Bulgarian Academy of Sciences, Acad G. Bonchev Str. Building 21, 1113 Sofia, Bulgaria, and ${ }^{\mathbf{b}}$ Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad G. Bonchev Str. Building 107, 1113 Sofia, Bulgaria
Correspondence e-mail: blshivachev@gmail.com

Received 15 February 2010; accepted 22 April 2010

Key indicators: single-crystal X-ray study; $T=290 \mathrm{~K}$; mean $\sigma()=0.000 \AA$; disorder in main residue; R factor $=0.053 ; w R$ factor $=0.148$; data-to-parameter ratio $=14.4$.

In the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BNO}_{3}$, the molecule lies on an inversion center leading to a statistical disorder of the $\mathrm{B}(\mathrm{OH})_{2}$ and CONH_{2} groups. In the crystal structure, molecules are linked by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming sheets parallel to the $b c$ plane. The $\mathrm{B}(\mathrm{OH})_{2}$ and CONH_{2} groups are twisted out of the mean plane of the benzene ring by 23.9 (5) and $24.6(6)^{\circ}$, respectively.

Related literature

For general background to the use of boronic acids in organic synthesis, as pharmaceutical agents and in crystal engineering see: Miyaura \& Suzuki (1995); Suzuki (1999); Adams \& Kauffman (2004); Barth et al. (2005); Minkkilä et al. (2008); Maly et al. (2006); Desiraju (1995); James et al. (2006).. For related structures, see: Cobbledick \& Small (1972); RodríguezCuamatzi et al. (2004). For hydrogen-bond motifs, see: Bernstein et al. (1995).

Experimental

Crystal data
$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BNO}_{3}$
$\gamma=93.136(14)^{\circ}$
$M_{r}=164.95$
Triclinic, $P 1$
$a=4.997$ (2) \AA
$b=5.351$ (2) A
$c=7.2967$ (16) \AA
$\alpha=103.912(13)^{\circ}$
$\beta=98.69$ (2) ${ }^{\circ}$

Data collection

Enraf-Nonius CAD-4 diffractometer
2155 measured reflections
1078 independent reflections
reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.054$
3 standard reflections every 120 min intensity decay: 2%

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.148$
$S=1.03$
88 restraints
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.28$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.23 \mathrm{e}^{-3}$
reflections

75 parameters

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	H $\cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1-\mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.96	2.77 (2)	167
$\mathrm{O} 2-\mathrm{H} 2 A \cdots \mathrm{O}{ }^{\text {ii }}$	0.82	2.05	2.79 (2)	149
$\mathrm{O} 2-\mathrm{H} 2 A \cdots 3^{3 i \mathrm{iij}}$	0.82	2.00	2.73 (2)	149
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{O} 3^{\text {iv }}$	0.86	2.14	2.97 (3)	160.7
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 1^{v}$	0.86	2.30	2.97 (2)	135.7
$\mathrm{N} 1-\mathrm{H} 1 B \cdots \mathrm{O} 3^{\text {vi }}$	0.86	2.18	2.90 (2)	140.8

Symmetry codes: (i) $-x,-y-1,-z+1$; (ii) $x+1, y, z$; (iii) $-x+1,-y,-z$; (iv) $-x,-y+1,-z-1$; (v) $-x-1,-y,-z$; (vi) $x-1, y, z$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors wish to acknowledge NSFB grants RNI09/01 and DOO2/305.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LH2998).

References

Adams, J. \& Kauffman, M. (2004). Cancer Investig. 22, 304-311.
Barth, R. F., Coderre, J. A., Gra, M., Vicente, H. \& Blue, T. E. (2005). Clin. Cancer Res. 11, 3987-4002.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. \& Taylor, R. (2002). Acta Cryst. B58, 389-397.
Cobbledick, R. E. \& Small, R. W. H. (1972). Acta Cryst. B28, 2893-2896.
Desiraju, G. R. (1995). Angew. Chem. Int. Ed. 34, 2311-2327.
Enraf-Nonius (1994). CAD-4 EXPRESS. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
James, T. D., Phillips, M. D. \& Shinkai, S. (2006). Boronic Acids in Saccharide Recognition. London: Royal Society of Chemistry.
Maly, K. E., Malek, N., Fournier, J.-H., Rodríguez-Cuamatzi, P., Maris, Th. \& Wuest, J. D. (2006). Pure Appl. Chem. 78, 1305-1321.
Minkkilä, A., Saario, S. M., Käsnänen, H., Leppänen, J., Poso, A. \& Nevalainen, T. (2008). J. Med. Chem. 51, 7057-7060.
Miyaura, N. \& Suzuki, A. (1995). Chem. Rev. 95, 2457-2483.
Rodríguez-Cuamatzi, P., Vargas-Díaz, G., Maris, T., Wuest, J. D. \& Höpfl, H. (2004). Acta Cryst. E60, o1316-o1318.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Suzuki, A. (1999). J. Organomet. Chem. 576, 147-168.

supplementary materials

```
Acta Cryst. (2010). E66, o1273 [ doi:10.1107/S1600536810014789]
```


(4-Carbamoylphenyl)boronic acid

M. D. Apostolova, R. P. Nikolova and B. L. Shivachev

Comment

The title compound possesses two distinct functional groups: boronic acid and amide. Compounds containing the boronic acid moiety are important as precursors for organic transformations (Miyaura \& Suzuki, 1995; Suzuki, 1999;) and recently attention has been focused on these types of compounds as potential pharmaceutical agents (Adams \& Kauffman, 2004; Barth et al., 2005; Minkkilä et al., 2008). Amides are versatile precursors to many other functional groups and undergo many chemical reactions, usually through an attack on the carbonyl group. The title compound is a commercial product and we solved its crystal structure to verify the repeatability of the weak interactions already observed in the structures of terephthalamide and phenylboronic acid Cobbledick \& Small, 1972; Rodríguez-Cuamatzi, P. et al., 2004. Self assembling based on hydrogen-bonding motifs is of general interest for crystal engineering, structural chemistry and biology (Maly et al., 2006; Desiraju, 1995).

The crystal structure of the studied compound contains molecules linked together by hydrogen bonds in sheets similar to those of terephthalamide (Cobbledick \& Small, 1972) and 1,4-phenilboronic acid (Rodríguez-Cuamatzi et al., 2004) (Fig. 1). More over all tree compounds have similar triclinic lattice parameters and crystallize in the centrosymmetric P-1 space group. In the title compound, the location of the molecule on a center of symmetry leads to a statistical disorder of the $\mathrm{B}(\mathrm{OH})_{2}$ and CONH_{2} groups (Fig. 1). The $\mathrm{B}(\mathrm{OH})_{2}$ and CONH_{2} groups are out of the mean plane of the benzene ring by $23.9(5)^{\circ}$ and $24.6(6)^{\circ}$ respectively. Similar angle is reported for the amide group in terephthalamide $\left(23^{\circ}\right)$ while the one for 1,4 phenilboronic acid is greater $\left(\sim 35^{\circ}\right)$. It should be noted that $\mathrm{C}-\mathrm{C}$ (phenyl-amide) and $\mathrm{C}-\mathrm{B}$ distances of 1.505 (6) \AA and 1.546 (6) \AA are restrained to match those in the terephthalamide molecule $\mathrm{C}-\mathrm{C}$ (phenyl-amide) distance of 1.489 (5) \AA and that of the 1,4-phenilboronic acid molecule with C—B of 1.564 (3) \AA.

Both amide and boronic acid groups are involved in hydrogen bonds to form ring motifs marked by I and II (Fig. 2). Type I, $\mathrm{R}_{2}^{2}(8)$ (Bernstein et al. 1995) connects opposite sides of molecules to chains. Type II links the chains to form sheets parallel to $b c$. However, two type of motifs linking the chains can be proposed: $\mathrm{R}_{4}^{4}(8)$ (Fig. 2a) and $\mathrm{R}^{3}{ }_{4}(8)$ (Fig. 2b). Indeed, hydrogen bonding pattern can vary depending on the position of the hydrogen atoms attached to the $\mathrm{B}(\mathrm{OH})_{2}$ moiety (Fig. 3). The current position of H atoms for the $\mathrm{B}(\mathrm{OH})_{2}$ group (syn, anti) results from a SHELX AFIX 147 instruction. As a result the bonding interaction between the $\mathrm{B}(\mathrm{OH})_{2}$ and amide groups is forbidden, due to the short contact between hydrogen atoms linked to O 1 and $\mathrm{N} 1(\mathrm{H} 1 \cdots \mathrm{H} 1 \mathrm{~A} 1.272 \AA)$. Thus the hydrogen bonding interactions in the chains are limited to "boronic-boronic" and "amid-amide". An alternative (anti, syn) positioning for H attached to O will permit hydrogen bonding between $\mathrm{B}(\mathrm{OH})_{2}$ and amid groups but an F_{o} map (Fig. 4) does not suggest an (anti, syn) conformation for the H atoms.

Experimental

The studied compound is a commercial product (Frontier Scientific). Colorless crystals of $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{NBO}_{3}$, were obtained after several days staying from 50% water:ethanol solution at 277 K .

Refinement

All H atoms were placed in idealized positions ($\mathrm{C}-\mathrm{H}=0.93 \AA, \mathrm{O}-\mathrm{H}=0.82 \AA$ and $\mathrm{N}-\mathrm{H}=0.86 \AA$) and were constrained to ride on their parent atoms, with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C}, \mathrm{O}$ or N$)$. Disorder refinement required the introduction of appropriate series of restraints on bond lengths and planarity.

Figures

Fig. 1. The molecule of title compound with the atom numbering scheme showing 50% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.

Fig. 2. Two possible ways of molecular arrangement in the unit cell, showing the hydrogenbonding interactions as dashed lines: type I connects opposite sides of molecules to chains and II links the chains together.

Fig. 3. Possible conformations of the $\mathrm{B}(\mathrm{OH})_{2}$ functional group.

Fig. 4. F_{o} electron density viewed perpendicular to the mean plane of the molecule.

(4-carbamoylphenyl)boronic acid

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{BNO}_{3}$
$Z=1$
$M_{r}=164.95$
Triclinic, $P \mathrm{~T}$
Hall symbol: -P 1
$a=4.997$ (2) \AA
$b=5.351(2) \AA$
$c=7.2967(16) \AA$
$\alpha=103.912(13)^{\circ}$
$\beta=98.69(2)^{\circ}$
$\gamma=93.136(14)^{\circ}$
$V=186.36(11) \AA^{3}$
$F(000)=86$
$D_{\mathrm{x}}=1.470 \mathrm{Mg} \mathrm{m}^{-3}$
Melting point: not measured K
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 22 reflections
$\theta=18.0-19.8^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=290 \mathrm{~K}$
Prismatic, colorless
$0.27 \times 0.25 \times 0.25 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
graphite
Non-profiled $\omega / 2 \theta$ scans
2155 measured reflections
1078 independent reflections
755 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.053$
$w R\left(F^{2}\right)=0.148$
$S=1.03$
1078 reflections
75 parameters
88 restraints
$R_{\text {int }}=0.054$
$\theta_{\text {max }}=30.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-7 \rightarrow 7$
$k=-7 \rightarrow 7$
$l=-10 \rightarrow 10$
3 standard reflections every 120 min
intensity decay: 2%

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0786 P)^{2}+0.0033 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.28 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-0.23$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathcal{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$	Occ. (<1)
B1	$-0.001(3)$	$-0.298(2)$	$0.2892(18)$	$0.0268(10)$	0.50
O1	$-0.243(3)$	$-0.393(3)$	$0.318(3)$	$0.0399(19)$	0.50
H1	-0.2184	-0.4584	0.4092	0.060^{*}	0.50
O2	$0.236(2)$	$-0.334(2)$	$0.404(2)$	$0.0351(15)$	0.50
H2A	0.3669	-0.3158	0.3510	0.053^{*}	0.50
C1	$0.0096(17)$	$0.113(2)$	$-0.1593(16)$	$0.0246(10)$	0.50
C2	$-0.2061(18)$	$-0.068(2)$	$-0.1647(17)$	$0.0314(10)$	0.50

H2	-0.3512	-0.1021	-0.2661	0.038^{*}	0.50
C3	$-0.207(2)$	$-0.197(2)$	$-0.0217(17)$	$0.0314(10)$	0.50
H3	-0.3529	-0.3166	-0.0282	0.038^{*}	0.50
C4	$0.0069(18)$	$-0.150(2)$	$0.1318(16)$	$0.0246(10)$	0.50
C5	$0.2219(19)$	$0.029(2)$	$0.1375(17)$	$0.0314(10)$	0.50
H5	0.3670	0.0634	0.2389	0.038^{*}	0.50
C6	$0.223(2)$	$0.158(2)$	$-0.0057(17)$	$0.0314(10)$	0.50
H6	0.3685	0.2776	0.0010	0.038^{*}	0.50
C7	$0.016(2)$	$0.256(2)$	$-0.3128(15)$	$0.0268(10)$	0.50
O3	$0.237(3)$	$0.341(3)$	$-0.344(3)$	$0.0399(19)$	0.50
N1	$-0.212(3)$	$0.283(3)$	$-0.415(3)$	$0.0351(15)$	0.50
H1A	-0.2112	0.3606	-0.5051	0.042^{*}	0.50
H1B	-0.3631	0.2237	-0.3916	0.042^{*}	0.50

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
B1	$0.0340(13)$	$0.027(3)$	$0.024(2)$	$0.0062(15)$	$0.0098(12)$	$0.011(2)$
O1	$0.0295(7)$	$0.054(5)$	$0.048(4)$	$0.002(2)$	$0.0081(18)$	$0.035(4)$
O2	$0.0282(18)$	$0.046(4)$	$0.0412(16)$	$0.006(2)$	$0.0081(15)$	$0.029(3)$
C1	$0.0301(11)$	$0.028(3)$	$0.020(3)$	$0.0076(11)$	$0.0089(11)$	$0.0097(19)$
C2	$0.0331(11)$	$0.038(3)$	$0.024(3)$	$-0.0005(12)$	$-0.0004(12)$	$0.0137(19)$
C3	$0.0329(11)$	$0.034(3)$	$0.030(3)$	$-0.0018(12)$	$0.0048(12)$	$0.015(2)$
C4	$0.0301(11)$	$0.028(3)$	$0.020(3)$	$0.0076(11)$	$0.0089(11)$	$0.0097(19)$
C5	$0.0331(11)$	$0.038(3)$	$0.024(3)$	$-0.0005(12)$	$-0.0004(12)$	$0.0137(19)$
C6	$0.0329(11)$	$0.034(3)$	$0.030(3)$	$-0.0018(12)$	$0.0048(12)$	$0.015(2)$
C7	$0.0340(13)$	$0.027(3)$	$0.024(2)$	$0.0062(15)$	$0.0098(12)$	$0.011(2)$
O3	$0.0295(7)$	$0.054(5)$	$0.048(4)$	$0.002(2)$	$0.0081(18)$	$0.035(4)$
N1	$0.0282(18)$	$0.046(4)$	$0.0412(16)$	$0.006(2)$	$0.0081(15)$	$0.029(3)$

Geometric parameters (${ }_{A},{ }^{\circ}$)

$\mathrm{B} 1-\mathrm{O} 1$	$1.351(8)$
$\mathrm{B} 1-\mathrm{O} 2$	$1.393(8)$
$\mathrm{B} 1-\mathrm{C} 4$	$1.546(6)$
$\mathrm{O} 1-\mathrm{H} 1$	0.8200
$\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	0.8200
$\mathrm{C} 1-\mathrm{C} 6$	$1.388(8)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.397(8)$
$\mathrm{C} 1-\mathrm{C} 7$	$1.505(6)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.384(8)$
$\mathrm{C} 2-\mathrm{H} 2$	0.9300
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{O} 2$	$118.9(15)$
$\mathrm{O} 1-\mathrm{B} 1-\mathrm{C} 4$	$119.4(13)$
$\mathrm{O} 2-\mathrm{B} 1-\mathrm{C} 4$	$121.6(12)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2$	$117.8(5)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7$	$120.0(7)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	$122.2(7)$

$\mathrm{C} 3-\mathrm{C} 4$	$1.391(8)$
$\mathrm{C} 3-\mathrm{H} 3$	0.9300
$\mathrm{C} 4-\mathrm{C} 5$	$1.391(8)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.384(8)$
$\mathrm{C} 5-\mathrm{H} 5$	0.9300
$\mathrm{C} 6-\mathrm{H} 6$	0.9300
$\mathrm{C} 7-\mathrm{O} 3$	$1.246(7)$
$\mathrm{C} 7-\mathrm{N} 1$	$1.298(7)$
$\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	0.8600
$\mathrm{~N} 1-\mathrm{H} 1 \mathrm{~B}$	0.8600
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{B} 1$	$122.2(8)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$120.8(5)$
$\mathrm{C} 6-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	119.6
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$121.2(6)$
$\mathrm{C} 5-\mathrm{C} 6-\mathrm{H} 6$	119.4

sup-4

supplementary materials

$\mathrm{C} 3-\mathrm{C} 2-\mathrm{C} 1$	$121.1(5)$	$\mathrm{C} 1-\mathrm{C} 6-\mathrm{H} 6$	119.4
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.5	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{N} 1$	$120.8(16)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.5	$\mathrm{O} 3-\mathrm{C} 7-\mathrm{C} 1$	$120.4(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$120.8(5)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$118.8(13)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	119.6	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	119.6	$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.2(5)$	$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{B} 1$	$119.5(8)$		

Hydrogen-bond geometry ($\AA,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	0.82	1.96	$2.77(2)$	167
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{ii}}$	0.82	2.05	$2.79(2)$	149
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{iii}}$	0.82	2.00	$2.73(2)$	149
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\text {iv }}$	0.86	2.14	$2.97(3)$	160.7
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{v}}$	0.86	2.30	$2.97(2)$	135.7
$\mathrm{~N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{vi}}$	0.86	2.18	$2.90(2)$	140.8

Symmetry codes: (i) $-x,-y-1,-z+1$; (ii) $x+1, y, z$; (iii) $-x+1,-y,-z$; (iv) $-x,-y+1,-z-1$; (v) $-x-1,-y,-z$; (vi) $x-1, y, z$.

supplementary materials

Fig. 1

Fig. 2
(a)

(b)

supplementary materials

Fig. 3

syn, syn
syn, anti

anti, syn
anti, anti

Fig. 4

